
FISEVIER

Contents lists available at ScienceDirect

Genomics

journal homepage: www.elsevier.com/locate/ygeno

Functional classification analysis of somatically mutated genes in human breast and colorectal cancers

Thomas W. Chittenden ^{a,b,c,1}, Eleanor A. Howe ^{a,1}, Aedin C. Culhane ^{a,b}, Razvan Sultana ^a, Jennifer M. Taylor ^d, Chris Holmes ^{c,e}, John Quackenbush ^{a,b,*}

- ^a Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115-6084, USA
- b Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
- ^c Department of Statistics, University of Oxford, Oxford, UK
- ^d Bioinformatics and Statistical Genetics, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- ^e MRC Mammalian Genetics Unit, Harwell, UK

ARTICLE INFO

Article history: Received 23 April 2007 Accepted 5 March 2008 Available online 22 April 2008

Keywords: Breast cancer Colorectal cancer Genomics Bioinformatics

ABSTRACT

A recent study published by Sjoblom and colleagues [T. Sjoblom, S. Jones, L.D. Wood, D.W. Parsons, J. Lin, T.D. Barber, D. Mandelker, R.J. Leary, J. Ptak, N. Silliman, S. Szabo, P. Buckhaults, C. Farrell, P. Meeh, S.D. Markowitz, J. Willis, D. Dawson, J.K. Willson, A.F. Gazdar, J. Hartigan, L. Wu, C. Liu, G. Parmigiani, B.H. Park, K.E. Bachman, N. Papadopoulos, B. Vogelstein, K.W. Kinzler, V.E. Velculescu, The consensus coding sequences of human breast and colorectal cancers. Science 314 (2006) 268-274.] performed comprehensive sequencing of 13,023 human genes and identified mutations in genes specific to breast and colorectal tumors, providing insight into organ-specific tumor biology. Here we present a systematic analysis of the functional classifications of Sjoblom's "CAN" genes, a subset of these validated mutant genes, that identifies novel organ-specific biological themes and molecular pathways associated with disease-specific etiology. This analysis links four somatically mutated genes associated with diverse oncological types to colorectal and breast cancers through established TGF-β1-regulated interactions, revealing mechanistic differences in these cancers and providing potential diagnostic and therapeutic targets.

 $\ensuremath{\mathbb{C}}$ 2008 Elsevier Inc. All rights reserved.

Tumors arise from genetic alterations occurring within a single cell. These are passed to daughter cells that accumulate additional mutations within oncogenes, tumor-suppressor genes, and genomic stability genes [2], which ultimately give rise to tumorigenesis. Although many gene-specific mutations have been discovered in a wide range of cancers, the reference human genome sequence and improved highthroughput sequencing technologies provide the opportunity for an unbiased approach to identify potentially important mutations. Such an approach was used in a recent study by Sjoblom and colleagues [1] that examined 14,661 transcripts from 13,023 genes (120,839 exons) from the consensus coding sequences (CCDS) database [3] in 11 breast tumors, 11 colorectal tumors, and 2 normal control samples. A collection of 1149 potential mutations was detected, from which a subset of 236 somatically mutated genes was experimentally validated. Statistical analysis of these validated genes then identified a group of candidate cancer genes (CAN genes) that had a higher baseline frequency of mutation than expected by chance: 122 in breast and 69 in colorectal cancers. Grouping organ-specific CAN mutant coding sequences into biological themes based on Gene Ontology terms, Sjoblom et al. associated these genes with specific cellular processes, including cellular adhesion and motility, signal transduction, transcriptional regulation, transport, cellular metabolism, intracellular trafficking, and RNA metabolism, among others. Moreover, they identified significant differences in the mutation spectra of human breast and colorectal cancers, suggesting distinct mutagenic and etiologic pathways.

While enlightening, this qualitative approach to gene functional analysis does not take into account the relative representation of different functional classes associated with the entire collection of genes surveyed. For example, since signal transduction genes are highly represented in the CCDS database, the likelihood of a mutation occurring by chance within these genes is greater than in other, less well represented classes. With this in mind, we reanalyzed the CAN gene dataset from Sjoblom et al. to identify biological functional classes and pathways in which greater numbers of genes accumulate mutations than one would expect by chance. Application of a statistically based categorical representation approach allows one to move beyond looking at individual genes to identify systems, rather than individual genes, that may be associated with disease development and progression. The use of such methods, supplemented by text mining applied to PubMed abstracts associated with those genes, allowed us to

^{*} Corresponding author. Fax: +1 617 582 7760.

E-mail address: johnq@jimmy.harvard.edu (J. Quackenbush).

¹ These authors contributed equally to this work.

Table 1 EASE analysis: overrepresented functional classes of mutated CAN genes found in breast and colorectal cancer

	tal Cancer	tional classes of mutated							
			List	List	Pop	Pop	Fisher's	Prob	
Category	Accession	Term Enzyme linked	Hits	Size	Hits	Size	Exact	Anal	CAN Genes
		receptor							
GO		protein							EPHB6, PTPRU, TGFBR2,
Biological	CO-0007467	signaling	8	64	144	40040	2.3×10 ⁻⁶	1.0×10 ⁻³	EPHA3, PTPRD, SMAD4,
Process	GO:0007167	pathway	•	61	144	10019	2.3×10	1.0×10	SMAD3, SMAD2
PFAM	PF03166	MH2 domain	3	46	6	5673	9.8×10 ⁻⁶	4.0×10 ⁻³	SMAD4, SMAD3, SMAD2
domain	PF03100	WITZ domain	3	40	-	3073	9.0×10	4.0×10	SIMAD4, SIMAD3, SIMAD2
PFAM	DEGGAGE	Mild damain		46		F670	9.8×10 ⁻⁶	40.40-3	CMAD4 CMAD2 CMAD2
domain GO	PF03165	MH1 domain Metalloendo-	3	46	6	5673	9.8×10	4.0×10 ⁻³	SMAD4, SMAD3, SMAD2 ADAM29, ADAMTSL3,
Molecular		peptidase							ADAMTS18, ADAMTS15,
Function	GO:0004222	activity	6	63	86	10197	1.4×10 ⁻⁵	2.0×10 ⁻³	UQCRC2, MMP2
PFAM		Fibronectin							CHL1, EPHB6, PTPRU,
domain	PF00041	type III domain	6	46	77	5673	3.1×10 ⁻⁵	1.0×10 ⁻²	CNTN4, EPHA3, PTPRD
		TGFbeta							
GO Biological		receptor							TCERRS SMARA SMARS
Biological Process	GO:0007179	signaling pathway	4	61	32	10019	3.9×10 ⁻⁵	1.7×10 ⁻²	TGFBR2, SMAD4, SMAD3, SMAD2
		Trans-		<u> </u>		100.0	0107710		
		membrane							
		receptor protein serine /							
		threonine							
GO		kinase							
Biological		signaling		١			5		TGFBR2, SMAD4, SMAD3,
Process	GO:0007178	pathway	4	61	36	10019	6.3×10 ⁻⁵	2.4×10 ⁻²	SMAD2
									TP53, TBX22, APC, PKHD1, ABCA1, TGFBR2, ERCC6,
SwissProt		Disease							GALNS, RET, GNAS, NF1,
keyword		mutation	14	44	675	6565	7.9×10 ⁻⁵	5.0×10 ⁻³	SMAD4, KRAS, SMAD2
DI .		Colorectal	١.	_۔ ا		4000	4 = 40-4	4 = 40-2	/
Phenotype GO		cancer SMAD protein	4	17	22	1202	1.7×10 ⁻⁴	1.5×10 ⁻²	TP53, APC, TGFBR2, KRAS
Biological		hetero-							
Process	GO:0007183	merization	2	61	4	10019	2.2×10 ⁻⁴	5.2×10 ⁻²	SMAD4, SMAD2
		Common-							
GO		partner SMAD protein							
Biological		phosphory-							
Process	GO:0007182	lation	2	61	4	10019	2.2×10 ⁻⁴	5.2×10 ⁻²	SMAD4, SMAD2
									TP53, ACSL5, KCNQ5, CD46,
									APC, ADAM29, PKHD1, RUNX1T1, EVL, GUCY1A2,
									EPHA3, MAP2, EYA4,
SwissProt		Alternative		l					PTPRD, GNAS, NF1, KRAS,
keyword		splicing	19	44	1310	6565	3.7×10 ⁻⁴	3.8×10 ⁻²	SMAD2, <mark>SFRS6</mark>
		Pancreatic	_				4 4 40-3	2 2 42-2	
Phenotype		cancer 84.Ubiquitinatio	2	17	4	1202	1.1×10 ⁻³	3.8×10 ⁻²	TP53, SMAD4
BBID		n_Pathways_Ce						1900	
pathway		II _Cycle	2	3	12	291	4.6×10 ⁻³	4.1×10 ⁻²	APC, CD248
	22 722	Hs_TGF Beta							
GenMAPP	Human/Gen MAPP.org	Signaling	4	15	41	1154	1.4×10 ⁻³	2.0×10 ⁻²	TGFBR2, SMAD4, SMAD3,
pathway		Pathway	4	13	41	1154	1.4×10	2.0×10	SMAD2
Breast C	ancer		11.4	1 11-4			F: 1 . 1	D 1	
Category	Accession	Term	List Hits	List Size	Pop Hits	Pop Size	Fisher's Exact	Prob Anal	CAN Genes
Jacogory	7,000001011	.5		0.20		JIEC	LAUOL	, alui	ADAM12, CDH10, CDH20,
	1	200 200 2							COL11A1, COL7A1, ICAM5,
GO Molocular		cell adhesion							ITGA9, NRCAM, RAPH1,
Molecular Function	GO:0005194	molecule activity	13	109	264	10197	4.4×10 ⁻⁶	2.0×10 ⁻³	TECTA, THBS3, PCDHB15, COL19A1
GO	22.000104					.0.07	-1.77.10	0^.10	
Biological	ACCUPATION AND DESCRIPTION OF THE PERSON OF	activation of		2020 100	1000	5 (2000 000 miles	gg mass assume	pyrosis process	
Process	GO:0007257	JNK activity	3	104	5	10019	1.1×10 ⁻⁵	1.0×10 ⁻³	DBN1, RASGRF2, MAP3K6
SwissProt keyword	1	GTPase activation	5	71	36	6565	3.7×10 ⁻⁵	3.0×10 ⁻³	CENTB1, RAP1GAP, CENTG1, RASAL2, STARD8
PFAM		acuvauon	3	- ' ' -	30	0303	3.7 × 10		CENTOT, NASALZ, STARDO
domain	PF00435	Spectrin repeat	3	62	11	5673	1.9×10 ⁻⁴	3.8×10 ⁻²	SPTAN1, MACF1, SYNE2

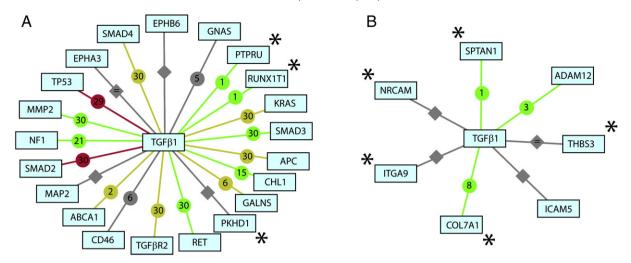


Fig. 1. Chilibot text-mining analysis of somatically mutated CAN genes in colorectal and breast cancers and their relationship to TGF-β regulation. (A) Somatically mutated CAN genes in colorectal cancer. (B) Somatically mutated CAN genes in breast cancer. Light blue rectangles, queried terms. Green circles, interactive relationship (stimulative). Red circles, interactive relationship (inhibitory). Yellow circles, interactive relationship (both stimulative and inhibitory). Gray circles, interactive relationship (neutral). Gray diamonds with symbol, noninteractive (i.e., parallel) relationship. Gray diamonds without symbol, abstract co-occurrence only. Numbers within icons represent PubMed abstracts supporting each association. *Gene has not been clinically implicated in respective cancer state.

identify novel associations of numerous oncological types to colorectal and breast cancers through established TGF-β1-regulated interactions.

Results and discussion

We analyzed the 69 CAN genes found by Sjoblom and associates [1] to be mutated in colorectal cancer, using EASE [4]. EASE uses Fisher's exact test to identify overrepresented functional classes relative to the distribution of class assignments for genes in a reference dataset, in this case the CCDS database from which the genes to be sequenced were selected. Functional class assignments included Gene Ontology [5] assignments, chromosome location, phenotype, Pfam domains [6], Swiss-Prot keywords [7], BBID assignments [8], and the GenMAPP [9] and KEGG pathway databases [10]. For CAN genes falling within those overrepresented classes, we then used Chilibot [11] to perform text mining to delineate associations between the mutant genes and various cancers.

We found 37 CAN genes associated with significantly overrepresented biological classes. Twenty of these, including APC, TP53, and TGFBR2, have been previously associated with colorectal cancer; these largely represent TGF- β signaling, disease mutation, alternative splicing, and proteins containing MH1 and MH2 domains (Table 1). Although none of the MH1-containing proteins were found to have mutations in the active domain, of the MH2-containing proteins, 70% of the CAN mutations identified by Sjoblom et al. were found within the MH2 domain itself. This percentage was not statistically significant according to χ^2 analysis, however, due to the small sample size. The remaining 17, including CAN genes associated with metalloendopeptidase activity and alternative splicing and those containing a fibronectin type III domain, have not been clinically linked to colorectal cancer as determined by text mining [11].

The most prominent association revealed in this analysis was the role of TGF- β 1 regulation, with 17 of the 37 CAN genes having an established relationship to this process (Fig. 1A). While mutational

inactivation of TGFBR2 is common in approximately 20–30% of all colorectal cancers [12] and 70% of colorectal cancers with high degree microsatellite instability [13], we find that a significant number of additional TGF- β 1-regulated genes are also mutated in colorectal cancer, suggesting a much more significant role for this pathway.

Of the 17 TGF-β1-regulated CAN genes, PTPRU and RUNX1T1 have not been clinically linked to colorectal cancer. PTPRU is implicated in a number of cellular processes, including cell growth, cell-cell recognition, cell adhesion, differentiation, mitotic cycle, and oncogenic transformation. The expression of this gene is regulated, in part, by Ras and upregulated in Jurkat T lymphoma cells [14]. In addition, overexpression of PTPRU in SW480 cells significantly suppresses cell proliferation and migration, suggesting that colorectal carcinomas with mutant PTPRU may be more aggressive [15]. Although RUNX1T1 (ETO) has not been implicated in TGF-β1 regulation in colorectal cancer, TGF-β1 is a potent endogenous negative regulator of hematopoiesis, and the t(8;21) (q22;q22) translocation of this gene, which produces a chimeric protein (AML1–ETO), is one of the most common cytogenetic abnormalities in acute myeloid leukemia [16]. These data implicate aberrant TGF-β1 regulation as a major contributor to the disease etiology of colorectal cancer

This high rate of hits in a single pathway is interesting, particularly since other pathways known to be involved in colorectal cancer were not targeted for mutations in the same manner. For example only 6 of the 62 genes in the WNT/ β -catenin pathway (SMAD2, SMAD3, SMAD4, TP53, TCF7L2, APC) were identified, despite the fact that this pathway is abnormally regulated in 80% of colorectal cancers [17].

Of the 122 CAN genes Sjoblom and colleagues [1] identified in breast cancer, we found 24 associated with overrepresented biological classes. Only 5 CAN genes involved in cell adhesion molecule activity and GTPase activation have a previously described relationship to breast cancer [11] (Table 1). The remaining 19 CAN genes include those linked to JNK activation and proteins containing spectrin-repeat domains. Moreover, all enriched breast cancer terms can be linked to disease-

specific cytoskeleton regulation, representing a variety of cellular functions including cell adhesion, migration, proliferation, apoptosis, and differentiation. This suggests that cytoskeletal dysregulation may be a major contributor to general breast cancer etiology. However, it is well known that breast cancer is a molecularly diverse disease in which subgroups are distinguished by hormone receptor status and gene expression profiles [18]. It is, therefore, unfortunate that more complete data on these tumors are unavailable, as they might provide additional insight.

Nevertheless, the available data allow one to draw some interesting comparisons. Unlike colorectal cancer, somatic mutation in breast cancer appears largely TGF- β 1 independent. Only 3 of the 24 CAN genes identified in our analysis have a known association with TGF- β 1 regulation (Fig. 1B) and 2 of these (COL7A1 and SPTAN1) have no clinical link to breast cancer. Type VII collagen (COL7A1) defects cause recessive dystrophic epidermolysis bullosa (RDEB), a blistering skin disorder often accompanied by epidermal cancers. Tumorstroma interactions mediated by collagen Type VII promote neoplasia in RDEB patients and may contribute to their increased susceptibility to squamous cell carcinoma. COL7A1 is activated by TGF- β 1 via SMAD transcription factors and JUN [19]. α II-Spectrin (SPTAN1) is upregulated and associated with tumorigenesis in ovarian cancer. Moreover, TGF- β 1 promotes caspase 3-independent cleavage of SPTAN1, suggesting mutation of a distinct apoptotic pathway in breast cancer [20].

Our systematic functional classification, comprising statistical tests for overrepresented biological themes and text mining, provides support for the manually derived themes of recent work by Sjoblom et al. [1] and allowed us to identify additional mechanistic insights into the differences between breast and colorectal cancers. In particular, we have identified disease-specific functional classes and somatically mutated molecular pathways that have not been previously reported. We have also found evidence supporting a potentially more significant role for TGF- β 1 regulation in colorectal tumorigenesis, a role that highlights mechanistic differences between human breast and colorectal cancers. Furthermore, our analysis identified four frequently mutated genes (PTPRU, RUNX1T, COL7A, SPTAN1) associated with TGF- β regulation that may represent diagnostic and therapeutic targets.

Given the rapid advances in next-generation sequencing technology, we expect to see increasing numbers of sequence-based studies that will expand the catalog of potentially causative mutations in a wide range of disease states. As we have learned from gene expression studies, functional analysis of the resulting gene lists using now well-established classification systems such as GO can help put the work into an intellectual framework that provides the opportunity for hypothesis generation and mechanistic interpretation. However, such analysis must be applied rigorously to avoid reaching conclusions that reflect trends in the data rather than patterns in the gene set that was sampled.

Materials and methods

Somatically mutated breast and colorectal candidate cancer genes (CAN genes) identified by Sjoblom et al. [1] were subjected to a functional category representational analysis using EASE [4] as implemented in MeV [21]. EASE uses Fisher's exact test to identify functional classes that appear with a greater likelihood than by chance and calculates associated p values based on the hypergeometric distribution. Here we analyzed representation for Gene Ontology [5] assignments, chromosome location, phenotype, Pfam domains [6], Swiss-Prot keywords [7], BBID assignments [8], and the GenMAPP [9] and KEGG pathways [10]. In the analysis of GO terms, EASE uses the structure of the GO hierarchy and performs an analysis at each level. One potential limitation of this method is that it identifies as significant those pathways and functional classes that have many genes that have accumulated mutations and does not account for the mutation rates of individual genes.

Chilibot [11] was then used to identify associations between somatically mutated CAN genes belonging to the enriched functional classes and disease state. Chilibot is a Web-based application that uses natural language processing to search PubMed abstracts for relationships between genes of interest. Each gene is compared with each

other gene in the query group and assigned a relationship (stimulatory, inhibitory, neutral, parallel, or abstract co-occurrence) based on data in the abstract.

Acknowledgments

Thomas Chittenden is supported by an American Heart Association Research Fellowship Award (0525982T). John Quackenbush is supported by grants from the U.S. National Cancer Institute of the National Institutes of Health (R01-CA098522; R01-LM008795) and through funds provided by the Dana–Farber Cancer Institute High Tech Fund.

References

- [1] T. Sjoblom, S. Jones, L.D. Wood, D.W. Parsons, J. Lin, T.D. Barber, D. Mandelker, R.J. Leary, J. Ptak, N. Silliman, S. Szabo, P. Buckhaults, C. Farrell, P. Meeh, S.D. Markowitz, J. Willis, D. Dawson, J.K. Willson, A.F. Gazdar, J. Hartigan, L. Wu, C. Liu, G. Parmigiani, B.H. Park, K.E. Bachman, N. Papadopoulos, B. Vogelstein, K.W. Kinzler, V.E. Velculescu, The consensus coding sequences of human breast and colorectal cancers, Science 314 (2006) 268–274.
- [2] B. Vogelstein, K.W. Kinzler, Cancer genes and the pathways they control, Nat. Med. 10 (2004) 789–799.
- [3] C. Database, URL: http://www.ncbi.nlm.nih.gov/CCDS.
- [4] D.A. Hosack, G. Dennis Jr., B.T. Sherman, H.C. Lane, R.A. Lempicki, Identifying biological themes within lists of genes with EASE, Genome Biol. 4 (2003) R70.
- [5] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, G. Sherlock, Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet. 25 (2000) 25–29.
- [6] Pfam, URL: http://www.sanger.ac.uk/Software/Pfam/.
- [7] B. Boeckmann, A. Bairoch, R. Apweiler, M.C. Blatter, A. Estreicher, E. Gasteiger, M.J. Martin, K. Michoud, C. O, 'Donovan, I. Phan, S. Pilbout, M. Schneider, The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Res. 31 (2003) 365–370.
- [8] K.G. Becker, S.L. White, J. Muller, J. Engel, BBID: the biological biochemical image database, Bioinformatics 16 (2000) 745–746.
- [9] K.D. Dahlquist, N. Salomonis, K. Vranizan, S.C. Lawlor, B.R. Conklin, GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways, Nat. Genet. 31 (2002) 19–20.
- [10] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, M. Kanehisa, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27 (1999) 29–34.
- [11] H. Chen, B.M. Sharp, Content-rich biological network constructed by mining PubMed abstracts, BMC Bioinformatics 5 (2004) 147.
- [12] S. Biswas, A. Chytil, K. Washington, J. Romero-Gallo, A.E. Gorska, P.S. Wirth, S. Gautam, H.L. Moses, W.M. Grady, Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer, Cancer Res. 64 (2004) 4687–4692.
- [13] S. Ogino, T. Kawasaki, A. Ogawa, G.J. Kirkner, M. Loda, C.S. Fuchs, TGFBR2 mutation is correlated with CpG island methylator phenotype in microsatellite instabilityhigh colorectal cancer, Hum. Pathol. 38 (2007) 614–620.
- [14] B. Wang, K. Kishihara, D. Zhang, T. Sakamoto, K. Nomoto, Transcriptional regulation of a receptor protein tyrosine phosphatase gene hPTP-J by PKC-mediated signaling pathways in Jurkat and Molt-4 T lymphoma cells, Biochim. Biophys. Acta 1450 (1999) 331–340.
- [15] H.X. Yan, W. Yang, R. Zhang, L. Chen, L. Tang, B. Zhai, S.Q. Liu, H.F. Cao, X.B. Man, H.P. Wu, M.C. Wu, H.Y. Wang, Protein-tyrosine phosphatase PCP-2 inhibits beta-catenin signaling and increases E-cadherin-dependent cell adhesion, J. Biol. Chem. 281 (2006) 15423–15433.
- [16] O. Heidenreich, J. Krauter, H. Riehle, P. Hadwiger, M. John, G. Heil, H.P. Vornlocher, A. Nordheim, AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells, Blood 101 (2003) 3157–3163.
- [17] A. Herbst, F.T. Kolligs, Wnt signaling as a therapeutic target for cancer, Methods Mol. Biol. 361 (2007) 63–91.
- [18] C.M. Perou, S.S. Jeffrey, M. van de Rijn, C.A. Rees, M.B. Eisen, D.T. Ross, A. Pergamenschikov, C.F. Williams, S.X. Zhu, J.C. Lee, D. Lashkari, D. Shalon, P.O. Brown, D. Botstein, Distinctive gene expression patterns in human mammary epithelial cells and breast cancers, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 9212–9217.
- [19] M.J. Calonge, J. Seoane, J. Massague, Opposite Smad and chicken ovalbumin upstream promoter transcription factor inputs in the regulation of the collagen VII gene promoter by transforming growth factor-beta, J. Biol. Chem. 279 (2004) 23759–23765.
- [20] T.L. Brown, S. Patil, C.D. Cianci, J.S. Morrow, P.H. Howe, Transforming growth factor beta induces caspase 3-independent cleavage of alphall-spectrin (alpha-fodrin) coincident with apoptosis, J. Biol. Chem. 274 (1999) 23256–23262.
- [21] A.I. Saeed, N.K. Bhagabati, J.C. Braisted, W. Liang, V. Sharov, E.A. Howe, J. Li, M. Thiagarajan, J.A. White, J. Quackenbush, TM4 microarray software suite, Methods Enzymol. 411 (2006) 134–193.